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1 BACKGROUND
1.1 A Changing Climate

The warming climate and its impacts become more
evident every day. As the climate warms, climate
zones are shifting polewards. These shifts in cli-
mate zones are seen in the contiguous United States
[PA16], the tropics [SLG*18, BPRW18], Australia
[PA18], and elsewhere in the world.

As the climate zones shift, so too do the plants and
animals species that rely on certain climatic condi-
tions. USDA plant cold-hardiness zones are shifting
to allow for more widespread cultivation of cold-
intolerant crops such as oranges and almonds [PA16],
leading to a new USDA plant hardiness zone map
development process [DWH*12].

Animal life is shifting as well to remain within pref-
erential conditions. Monllor-Hurtado, et al. [2012]
indicate that tuna catches in subtropical latitudes are
increasing while tuna catches in tropical regions are
decreasing as the oceans warm [MHPSL17]. Sunday,
et al. [2012] indicate that range shifts of cold-blooded
marine and terrestrial lifeforms do not follow the
same pattern [SBD12].

Weather phenomena also are changing as the cli-
mate warms. The spatial distribution of tornadoes
in the United States, for example, is shifting to the
east [ALCM16] while precipitation amounts are be-
coming increasingly variable in the Parisian basin
[DBMC19].
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The importance of detecting shifting climate zones
is the basis of this work and led us to our prob-
lem. Shifting climate biomes have important impli-
cations for agriculture production, species conser-
vation, weather prediction, fisheries sustainability:
How can we classify climates relatively easily and
visualize the shifts that are occuring?

1.2 Classifying Biomes

Human beings have attempted to classify climates
on several reprises in the past. One of the first and
most widespread climate classification schemes is
the Koppen classification scheme, first published in
1884 by Wladimir Képpen. This scheme divides the
climate into five “base” climate groups and then sub-
classifies these groups by precipitation type and heat
amounts [KVB11]. The next major climate classifi-
cation scheme was defined by GT Trewartha in 1966
and addressed some of the shortcomings of the Kop-
pen scheme. In the Trewartha Scheme, temperate
and subtropical climates are treated differently and
a new boreal climate type was defined [BHHK14].
A final major classification scheme is the Holdridge
Life Zone schema, which uses precipitation, temper-
ature, and potential evapotranspiration to classify
[Hol67, LBD*99].

While the previous three schemes used climatic
characteristics as the basis of classification, other
systems also exist that look at plant life resistance
to cold temperatures. The most familiar of these to
the home gardener is the USDA plant hardiness zone
mappings [DWH*12].

All four of the schemes previously mentioned use
human-defined heuristic-based methods to define cli-
mate regions. Newer approaches use Machine Learn-
ing techniques to classify climate but are either too
memory-intensive [NS16], focus on specific areas of



the world [LTYLO05], or do not have temporal com-
ponents [ZMH12].

One issue that the newer models face is how to ap-
proach seasonality of weather data. Many researchers
propose using time-warping to align multiple tempo-
ral datapoints [SKDCG16, IPJ15, DBMC19]. Another
shortcoming many of the current analyses is that,
most, if not all, provide static visualizations such as
those given by the PLACE project [Cen12]. Without
dynamic visualizations, it is difficult to understand
how the climate classifications evolve over time and
space.

1.3 Problem and Motivation

Given the complexities of using unsupervised learn-
ing to define climate biomes, no universally accepted
model exists. Thus, our goal is to develop an inter-
active, dynamic tool that will help move the state
of the art towards Machine Learning-based climate
classifications which will be useful to indicate that
the climate zones are shifting across time and space.

2 METHODOLOGY AND

EXPERIMENTATION

Our project consists of taking weather station data
from across the world over a long historical period,
preprocessing the dataset, running a clustering al-
gorithm on that data and then visualizing the re-
sults. The work is divided into two simultaneous
and iterative streams: Determining the Clusters and
Visualization.

2.1 Data and Preprocessing

2.1.1 Getting the Raw Data
In order to observe global climate variations over a
broad time period, we turned to the National Centers
for Environmental Information (NCEI) within the
National Oceanic and Atmospheric Administration.
Their website makes available hourly weather data
from more than 35,000 stations from 1901 to the
present in the Integrated Surface Dataset (1.2 TB)
[NOA15].

The data are ordered by year and each year has
an html page listing the csv files corresponding to
station data for that year.

To retrieve our dataset, we developed a python
script retrieving the html code of a page correspond-
ing to a year and, with regular expression rules, we
got the list of all the station download links for a
given year.

As we were writing the script, we realized that
a daily summarized version of the hourly dataset
was available on this same website with a size of ap-
proximately 32 GB. Using the daily dataset had the
additional benefit of providing a precipitation col-
umn formed from some combination of columns in
the hourly dataset. This combination of columns re-
quired prior field knowledge which we did not have.
This decision is based on [KVB11], which states that
taking precipitation into account is key to classify
biomes. We removed the years below 1974, as they
have low station availability (see Figure 1).
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Figure 1: Number of available stations over time

2.1.2 Features

Our dataset had many different - 23 features total
- and we wanted to reduce the number of features
which our models would be based on. The first cri-
teria for feature selection was avoiding having fea-
tures with too much missing data. Then, we wanted
to select non-correlated features. To do this, we plot-
ted the distribution of the feature values through
time, for different stations across the world. We re-
tained five relevant features: dew point, precipita-
tion, temperature, equivalent atmospheric pressure
at sea level and wind speed. Among them, three are
frequently taken to build biomes in the literature:
temperature, precipitation and pressure at sea level.



In our models, we decided to keep the two possibil-
ities, even if a posteriori we can see slightly better
results in working with 3 features only.

2.1.3 Inferring missing data

We observed that a large part of the stations (67%) do
not have daily data or that certain attributes (precip-
itation, temperature, etc.) are not reported for sev-
eral consecutive days (sometimes for ten consecutive
days). To address this we decided to linearly interpo-
late with existing data, in order to have a consistent
data set for each of the station-year tuples.

2.2 Determining the Clusters

2.2.1 Extracting the features

To be able to take into account the reversed season-
ality in the Northern and Southern Hemispheres,
we decided to use a state-of-the-art Dynamic Time
Warping method (see Figure 2). To extract the fea-
tures from our data, we used a Fourier Transform
method. With the alliance of Dynamic Time Warping
and Fast Fourier Transform [Huo18, SC78], we gen-
erated tensors that summarized one weather parame-
ter for a station-year tuple. The tensor was generated
with different resolutions (low and high).
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Figure 2: Dephasing during the extraction of fea-
tures

2.2.2  Clustering from the features

Dimensionality reduction
Our goal is to visualize a model showing shifts in
climate biomes. To do this we have to determine the
type of meteorological characteristics (temperature,
atmospheric pressure, precipitation, etc.) character-
izing the model. This number of characteristics is
then multiplied by the number of Fourier coefficients
that the end user can choose, which in some cases
leads us to cluster in spaces of d = (definition X
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number of characteristics) dimensions. Some-
times these features are colinear and to reduce the
complexity of fitting clusters in a high dimensional
space, we attempted dimensionality reductions (PCA
& ICA) before clustering the data.

Clustering algorithms

We used two different algorithms to perform our
clustering: the broadly used k-means and the more
probabilistic Expectation-Maximization. They have
different mathematical formulations of what consti-
tutes an optimal cluster. Given that we have no idea
of the mathematical distribution underlying our data,
we concluded that both could potentially produce
interesting climate biomes for our visualization. This
conclusion proved true as detailed below.

Measures of Model Quality

After clustering, we have more than 900 raw cli-
mate biome models, in total. To select the most promis-
ing, we developed two metrics, that we then com-
bined them to have a single score per model. As
a baseline for accuracy, we use the Képpen-Geiger
model as a ground truth.

For the first error metric, we wanted to quantify
the stability of intra-station cluster assignment: we
created one list of clusters we found per Képpen-
Geiger climate, then computed the entropy of each
list and summed the entropies. This metric is a mea-
sure of confidence, it gives an insight into the disor-
der inside a Képpen-Geiger climate.

For the second error metric, we performed the
exact same steps, inverting the roles of the Képpen-
Geiger model and our model. We wanted to inquire
the relevance of the climate zones based on known
climate biomes, such as deserts or rainforests (accu-
racy measure), to measure the disorder of Képpen-
Geiger climates inside our model climates. To com-
bine these two metrics, we multiplied the errors
found, and scale them so that we could compare
the models.

The main challenge of combining the metrics is
to be able to compare one model to the others for
a given number of clusters. Based on the central-
limit theorem, we expect the distribution to be some-
what Gaussian. From that, we wanted to align all the
means, and to have a similar area under the curve



to create one unified metric from all the previous
singular ones, as presented in Figure 3.
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Figure 3: Aligning and scaling the metrics across
the clusters

2.3 Visualization

In addition to displaying the clustering results, the
visualization serves as a post-processing step for
the data, removing temporal and spatial noise while
filling in missing areas.

2.3.1 D3and SVG

After evaluating a number of visualization options,
we settled on using Javascript and D3 to develop
the interface, due to the universality and flexibil-
ity of web apps. We initially developed a prototype
of the interface using D3’s Canvas elements, but
later switched to SVG for easier interactivity (e.g.
- mouseover events and tooltips). Significant effort
was taken to optimize performance for average com-
puters using Chrome.

2.3.2 Visualization Patterns: Voronoi, Grids, Con-
tours

In deciding how to display the thousands of labeled
weather stations on the world map, we considered
using the Voronoi pattern, which creates polygonal
cells with borders halfway between adjacent points.
However, this approach creates minuscule cells in
dense areas and massive cells in sparse areas (com-
pare Western Europe and Africa in Figure- 4). Thus,
we opted for a gridded approach which divides the
map into evenly sized squares. Squares containing
multiple stations use the mode for their label; squares
with no stations are left blank. This approach solves
both the issues of redundancy in dense areas and
over-representation in sparse areas. It also looks less
visually distracting (see Figure 4). As we moved to

determining how to make the visual interactive, we
realized that that the gridded approach was too slow
as it generated hundreds of cells. Thus, we decided
to group the cells into GeoJSON polygon/contour
objects, yielding vastly improved performance (see
Figure-4).
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Figure 4: Voronoi, gridded, and contour patterns on
the same model
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2.3.3  Automatic Color Assignment

Since the labels produced from the clustering algo-
rithm are categorical and arbitrary, we needed a way
to consistently color the clusters when switching be-
tween models of varying cluster counts (3,5,7,9) for
easier comparison. Therefore, we used the clusters’
average latitudes to evenly space its labels across our
chosen color palette.

2.3.4 Filling Empty Regions

Since weather is typically not localized to the imme-
diate area around the weather stations, we chose to
fill empty spaces by "growing" the clusters iteratively.
The algorithm takes empty cells that are contiguous
to filled cells and fills the empty cell with the mode
of its neighbors. By repeating this growing process,
empty regions can be filled to varying degrees (see
Figure 5).

Figure 5: Iterative growth passes to fill empty
spaces



2.3.5 Implementing Smoothing

Despite the prior data treatment steps, a fair amount
of spatial and temporal noise remains, causing the
animation to have a chaotic, flickering appearance.
We addressed this problem by implementing a cus-
tom change detection algorithm similar to CUSUM
[Mac90], mitigating temporal noise. For spatial noise,
we applied the aforementioned contours which use
the "Marching Squares" algorithm to smooth out the
gridded cells [LC87]. With both smoothing steps ap-
plied, the final animation has more easily observable
patterns with reduced flickering over time and space.

2.3.6 Interactive Components

We created interactive components of two types. The
first type is model selection and map animation al-
lowing users to choose how many clusters they want
to display on the map and to animate through time
to see how clusters change over the years. The model
displayed corresponds to the highest scored model
for that number of clusters, based on our scoring
metrics.

The second type is mouse-based interaction, allow-
ing users to mouseover a climate biome and see basic
statistics for the weather variables for that particular
biome. As a region is moused-over, the biome cluster
contour shades to a contrasting red color and the
statistics tooltip appears with the weather variable
information (see Figure 6).

Figure 6: Interactive Components

3 LiMITATIONS AND FUTURE

DIRECTIONS
Although this work seeks to respond to the problem
statement in a robust and comprehensive manner,

there are still limitations and future avenues for ex-
ploration.

A major limitation in the data lies in the lack of
long-term weather station data from certain areas of
the worlds. For example, Central and Saharan Africa,
parts of the Amazon River basin, Siberia and the
Indian subcontinent all lacked weather stations until
relatively recently. Although one solution would be
to search for other datasets to supplement the one
we used (such as satellite data), the only long-term
solution is to increase the number of weather stations
in these areas and let time do the work required to
generate more data. To fill in these areas that don’t
have many stations, we used the "filling" steps, as
outlined above, but a more advanced method may
exist, taking into account other factors, such latitude,
altitude, or other information.

From an algorithmic angle, although we desired to
create a consensus model from the different cluster-
ing algorithms we tried, this proved too ambitious
for the limited timeframe allotted to the work. Fu-
ture work can address this shortcoming and try to
understand how the strengths and weaknesses of
the deterministic k-means clustering (better latitudi-
nal classification) and the probabilistic expectation
maximization clustering (better longitudinal classi-
fication) might inform a coherent consensus model,
as proposed in [DWBA20].

The visualization uses a CUSU M-like algorithm
to detect changes in the assignment of climate clus-
ters. Although we envisioned trying CDCStream
[IBPP14], or some other algorithm, due to the time
constraints of the project, we were not able to ex-
plore this avenue as much as we wanted. We also
wanted to have graphs indicating the true distribu-
tions of weather variables and be able to compare a
certain year’s distribution to the overall timeframe
distribution. Finally, we would like to add an "ad-
vanced" mode to the model selection interactivty,
allowing users to pick models based on other at-
tributes besides number of clusters, such as number
of parameters, etc.

4 DiscussioN AND CONCLUSIONS
The goal of this work was two-fold: 1. to develop a

method by which to cluster areas of the Earth into
climate biomes using only weather data, avoiding



the use of human heuristics, and, 2. to examine if
those clustered biomes exhibit a tendency to shift
toward the poles.

4.1 Viewing the Global Climate

The approach outlined in this work provides a novel
method to view the rapidily shifitng climate biomes.

Many other climate classifications are based on
physical or heuristic models (Képpen and Trewartha)
[KVB11, BHHK14] - our model instead uses a cluster
analysis that relies on the data it is fed, thus we
are not limited to arbitrary, predefined, or human-
based definitions. Such a model is also adaptive to a
changing climate in that, should a new climate biome
arise, the model will automatically classify it.

Further, the number of climate zones to cluster out
can be tweaked which allows us to perform more
abstract or, inversely, more fine-grained analyses.
Additionally, because of the speed by which the mod-
els can be updated (simply continue to plug in new
observations), new year-based clusters can be devel-
oped on the fly. This would allow policy makers in
the domains of conservation, forestry, and agricul-
ture to see how climate biomes are changing and for-
mulate policy actions quickly. This is opposed to the
current process to create the USDA Hardiness Zone
maps, for example, which takes years [DWH*12].
Although the tool detailed in this work would not
replace that process, it would provide an informative
tool for inter-map periods.

Both algorithms (EM and k-means) performed
well, appearing among the top-scoring models, with
k-means favoring stability and EM favoring accuracy.
Our model scoring algorithm indicated that the best
model was the 9-cluster, k-means, low resolution, 3
parameters model without dimensionality reduction.
The corresponding EM model also performed well as
it is very close to the Trewartha reference. In Figure
7, we compare the known reality of the Trewartha
model with both model types.

Figure 7 illustrates how our models match the
known reality based on current human models, pro-
viding evidence that our models are not fallacious.

Finally, the tool itself provides an animated, inter-
active visualization that shows climate changes over
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Figure 7: Comparison of Trewartha model (center)
with our k-means (left) and EM (right) models. Tre-
wartha image credit: [Pet19]

time. To our knowledge, no other animated visual-
ization of climate biomes exists; all other examples
that we have found have been static.

4.2 A Climate, Changed

The visualization tool that we provide gives evidence
that the climate zones are shifting poleward, fulfill-
ing the second objective of this project (see Figure
8)

Figure 8: With the white and black lines as refer-
ences, the northward shift of climate zones in the
USA from 1978 (left) to 2019 (right) is evident.

Although the shifts are not very extreme, they
are discernible and provide sobering visual evidence
for what we already know is true: The climate has
changed.

From simple weather station data, indicating pre-
cipitation, temperature, dew point, wind speed, and
pressure, we have created dynamic models that ac-
curately classify climate biomes and that illustrate
how those biomes are shifting towards the poles.

We believe that the ideas and methodology pre-
sented here can help inform the public and policy
makers by making it easier and quicker to visualize
the changing climate.
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